常见物联网连接方式介绍
AI仍然是一个梦想,几十年前很多人所设想人工智能仍然没有实现。具有完全认知和智力能力的机器的概念被称为人工智能(AGI)或通用AI。目前还没有人建立这样的系统,如果可行的话,AGI的开发可能还需要数十年的时间。 但是,我们已经能够解决弱AI任务。我的研究公司Cognilytica已经定义七种AI模式,这些模式专注于感知、预测或规划的特定需求。 例如,它们包括训练机器:
这些用例都提供重要功能和价值,尽管没有解决AGI的总体目标。机器学习的发展直接带来这些弱AI应用程序的发展。而且由于数据科学使机器学习变得切实可行,因此它也使机器学习成为现实。 数据科学、机器学习和AI之间的差异 尽管数据科学、机器学习和AI很相似,并可在分析应用程序和其他用例中互相支持,但它们的概念、目标和方法却有很大不同。为了进一步区分它们,请考虑下列关键属性。 数据科学:
机器学习:
人工智能:
数据科学、机器学习和AI如何结合 数据科学本身的力量很巨大,当与机器学习相结合,可提供更大的潜在价值,从不断增长的数据池中获得洞察力。当这二者结合使用时,还可以驱动各种弱AI应用程序,并最终可能解决通用AI的挑战。 更具体地说,下面是企业如何结合数据科学、机器学习和AI以产生有效效果的示例:
数据科学、机器学习和AI是独立的概念,它们各自提供强大的功能,而这三者相结合正在改变我们管理企业和业务运营的方式-以及我们如何生活、工作以及与周围世界交互。 (编辑:淮南站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |