DeepMind发布乳腺癌诊断AI
![]() 目的患者数据来自英国与美国。在研究当中,六名人类放射科医生与基于计算机的AI方案共同对乳房X光片进行评估。DeepMind团队强调称,这套方案的目标在于让人工智能成为人类放射科医生的好帮手,而非将其彻底取代。这确实是一招妙棋,毕竟人们至少很难接受完全由计算机进行诊断——埃隆·马斯克的大脑芯片植入计划也面临着类似的困境。 为了将这项技术真正推向市场,DeepMind可能首先需要争取监管部门的支持,将其认定为医疗设备,而后再获取CE认证标识。看到这里,很多朋友可能要问:为什么要搞得这么麻烦?这套AI系统在本质上,不就是一种看图软件吗?事实上,乳腺癌筛查工具甚至是相关辅助工具,都会受到严格的监管。因为一旦发生误诊,病人可能会接受有创手术;如果出现漏诊,病人则可能错失接受治疗的最佳时机。 在欧洲,医疗设备的安全与质量标准相当严格,要求制造商进行大量临床试验,并对项目当中的设计、开发、配送甚至是安装流程进行全面质量控制。此外,内部与外部审计也必不可少,包括由外部审计师进行极为严苛的风险管理评估。 目前的问题在于,以往传统设备可以参考“同类产品”以证明自身的运行可靠性,但每套AI系统在一定程度上都可谓独一无二,因此只能从零开始接受全面验证。 谷歌当然不是唯一一家打算利用AI系统进军医疗保健市场的企业。在此之前,IBM就一直在努力通过Watson解决直接医学诊断问题,不虽然带来了不少令人振奋的个别成果与产出,但医学研究界目前普遍认为Watson演示中的“水分”过多,无法在日常临床应用中发挥同等作用。此外,也有不少学生以及业余爱好者从事医学数据AI应用方向的研究。但总体而言,将医疗类AI推向市场往往需要付出高昂的成本与努力,因此目前绝大部分相关工作仍局限于学术范畴之内。 除此之外,在将这一乳腺癌筛查技术推向市场的过程中,DeepMind还面对着另一项巨大挑战——这类自主医疗筛查系统可能被恶意人士所欺诈,并在误导之下做出错误判断。 哈佛医学院与麻省理工学院的一支联合团队发布了一篇振聋发聩的论文,这篇题为《针对医疗用深度学习系统的专业攻击》的文章提出多种可欺骗此类AI诊断系统的方法。研究人员们发现,即使不清楚AI系统的内部细节,恶意一方仍然能够成功欺骗目标系统。到目前为止,这种愚弄AI系统的能力可能正是迫使我们拒绝全面推广相关 (编辑:淮南站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |