加入收藏 | 设为首页 | 会员中心 | 我要投稿 淮南站长网 (https://www.0554zz.cn/)- 管理运维、图像技术、智能营销、专属主机、5G!
当前位置: 首页 > 站长资讯 > 外闻 > 正文

2021年国内5G发展前瞻

发布时间:2021-01-30 15:09:35 所属栏目:外闻 来源:互联网
导读:2.3.1.2 Wrapper(包装法) 把要使用的分类器作为特征选择的评价函数,对于特定的分类器选择最优的特征子集。其主要思想是将子集的选择看作是一个搜索寻优问题,生成不同的组合,对组合进行评价,再与其它的组合进行比较。常用方法有递归特征消除法。 递归特征

2.3.1.2 Wrapper(包装法)

把要使用的分类器作为特征选择的评价函数,对于特定的分类器选择最优的特征子集。其主要思想是将子集的选择看作是一个搜索寻优问题,生成不同的组合,对组合进行评价,再与其它的组合进行比较。常用方法有递归特征消除法。

  • 递归特征消除的主要思想是反复的构建模型(如SVM或者回归模型)然后选出最好的(或者最差的)的特征(可以根据系数来选),把选出来的特征选择出来,然后在剩余的特征上重复这个过程,直到所有特征都遍历了。这个过程中特征被消除的次序就是特征的排序。因此,这是一种寻找最优特征子集的贪心算法。

2.3.1.3 Embedded(集成法)

将特征选择嵌入到模型训练当中。其主要思想是通过使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。常用方法有:基于惩罚项的特征选择法(L1、L2)、决策树的特征选择法(信息熵、信息增益)。

注:该方法与算法强相关,所以在算法实现的时候进行阐述。

2.3.2 PCA(主成分分析法)

主成分分析(Principal components analysis,PCA)是一种分析、简化数据集的技术。主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征(旨在找到数据中的主成分,并利用这些主成分表征原始数据,从而达到降维的目的)。这是通过保留低阶主成分,忽略高阶主成分做到的。

一、 优缺点

1.优点:

  • 降低数据的复杂性,识别最重要的多个特征
  • 仅需方差衡量信息量,不受数据集以外的因素影响
  • 各主成分之间正交,可消除原始数据成分间的相互影响的因素
  • 计算方法简单,主要运算式特征值分解,易于实现

2.缺点:

可能损失有用信息(由于没有考虑数据标签,容易将不同类别数据完全混合在一起,很难区分)

  • 二适用数据类型——数值型数据

2.3.3 LDA(线性判别分析法)

LDA是一种监督学习的降维技术,它的数据集的每个样本是有类别输出的。PCA与此不同,PCA是不考虑样本类别输出的无监督降维技术。LDA的思想是“最大化类间距离和最小化类内距离”(将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大)

1.优点:

  • 在降维过程中可以使用类别的先验知识经验
  • LDA在样本分类信息依赖均值而不是方差的时候,比PCA之类的算法较优

2.缺点:

  • LDA不适合对非高斯分布(非正态分布)样本进行降维
  • LDA降维后可降为[1, 2,……,k-1]维,其中k为类别数
  • LDA在样本分类信息依赖方差而不是均值的时候,降维效果不好
  • LDA可能过度拟合数据
 

(编辑:淮南站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读