HR:估计你一辈子就是个程序员
早在2017年就曾有研究人员问道:“到2040年人工智能会写出大部分代码吗?”如今,OpenAI的GPT-3已被beta测试人员使用,已经可以用任何语言编写代码了,机器主导的编码几乎就在我们眼前。 GPT-3已接受了数千亿字或者甚至是整个互联网的训练,这就是为什么它可以用CSS、JSX、Python编码。GPT-3不需要对多种语言任务进行训练,其训练数据已包罗万象。反而是当给定琐碎的指示时,网络会将自己限制在手头的任务上。 GPT-n的演变 GPT通过将监督学习与无监督的预训练(或使用无监督步骤的参数作为监督的起点)配对,在语言任务中达到了最先进的水平。与其后继者相比,GPT很小,它只在几千本书和一台8GPU机器上进行训练。 GPT-2大幅扩大了规模,包含了10倍的参数,并提供了超过10倍的训练数据。尽管如此,数据集仍然相对有限,它被专门训练为“来自Reddit的链接,它至少收到了3个karma。”GPT-2被描述为一个“变色龙一样”的合成文本生成器,但它不像下游任务中的问答总结或翻译一样是最先进的。 GPT-3在人工智能领域中是里程碑式的存在,在一系列的任务中达到了最先进的水平,其主要突破是不再需要对特定任务进行微调。就尺寸而言,其模型再一次大幅扩大,达到1750亿个参数,是其上一代的116倍。 GPT-3根本不需要训练(一个零次学习的例子),其本来就令人印象深刻的性能在一次或两次学习之后黯然失色。 发展或灭亡 现在情况是:Beta测试人员正在使用GPT-3生成工作代码,这需要一些琐碎的知识。从按钮到数据表,甚至重建谷歌的主页,这些都可以通过零次学习完成。 除了人工智能的快速发展,其他两个主要的技术趋势正在加剧这样一个现实,未来编程工作将变得不再是“铁饭碗”:无代码和自动机器学习。 无代码分析:让每个人都成为数据科学家 无代码是指使任何人更容易构建新产品的可视化工具,无论是网站、设计、数据分析还是模型。Word Press、Wix和Shopify是典型的无代码工具,这使数百万人不再需要雇用开发人员或设计师,自己就能够做事情。 第二种趋势是AutoML,即自动机器学习,这大大缩短了人工智能生产所需的时间。 AutoML会成为数据科学家的终结吗? 类似Apteo的工具顺应了这些趋势,使人们无需具备编码技能都能够部署人工智能模型。GPT-3则将引发无代码和自动机器学习的又一波浪潮,许多潜在的雇主会选择这些工具,而不是雇佣昂贵的程序员。 当然,技术含量最低的程序员将最先离开,而专家就像在任何领域一样,将享受更长时间的工作保障。 不仅仅是代码——GPT-3已应用于任何语言任务 要将GPT-3引导到特定的语言任务,只需向它提供希望实现的示例。你可以直接用GPT-3写代码,也可以直接写诗歌、音乐媒体评论或任何其他文本。
例如,如果想生成一篇新闻文章,可以输入一个正标题,如“联合卫理公会同意历史分裂”和一个副标题,如“那些反对同性婚姻的人将形成自己的派别”。 (编辑:淮南站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |