值得关注的Kubernetes日志监控工具
在51CTO记者看来,这是一次非常令人“惊艳”的视频沟通。自疫情以来,作为媒体记者,几乎每周都会使用不同品牌的会议通讯软件频繁在线沟通,其中当然也包括了思科的Webex。但是这次在思科办公室,当同时感受到思科Webex协作产品的软件和硬件之后,无论是高清画质的清晰流畅,还是语音环境的AI降噪处理,甚至在线沟通时对于资料的共享操作,无一不顺畅便捷。记者不得不承认,Hari所说的“给客户提供10倍于现在远程工作体验感受”的说法并非吹嘘,甚至已经算相当谦虚了。
思科协作蓝图赋能混合式新工作模式 阻止骗子进入你的生活 要处理的数据不算太多时,你必须要在统计学和分析学之间做出选择。幸运的是,如果你有大量数据,那么你将有一个绝妙的机会来利用自己的分析和统计信息,而不会上当受骗。你还可以通过一个完美的计策来让自己免受骗子侵害,这叫做“数据拆分”,笔者认为这是数据科学中最强大的思想。 为保护自己免受骗子侵害,你要做的就是确保某些测试数据处于他们可窥探到的范围之外,然后将其他所有内容看作分析学(不要当真)。当你面对某种你可能会全盘接受的理论时,可以用它来替你做主,然后打开你的秘密测试数据,看看这个理论是不是一派胡言。 从人们习惯的时代到“小数据”时代,这是一个巨大的文化转变,你必须解释自己是如何知道自己所知道的东西,才能以一种轻松的方式-说服人们,你可能确实知道一些东西。 同样的道理也适用于机器学习/人工智能 一些伪装成机器学习/人工智能专家的骗子很容易被识破。你可以通过识破蹩脚工程师的方法来识破他们:他们反复尝试构建的“解决方案”无法交付。(较早的预警信号是他们缺乏行业标准编程语言和库的经验。) 但是那些构建出看上去可以正常运行的系统的人呢?你怎么知道事情是否有可疑之处?同样的道理也适用于此!骗子是阴险的,他会向你展示他们的模型有多好,用的是他们制作模型时使用的数据。如果你构建了一个极其复杂的机器学习系统,你怎么知道它能不能正常运行呢?你没法知道,除非你能证明它可以处理以前从未见过的新数据。 有足够的数据可以分割时,无需改变工整的公式即可证明项目的合理性(这仍然是一种老习惯,在任何地方都可以看到,不仅仅是在科学领域)。 进行统计工作或保持谦虚的态度 套用经济学家保罗·萨缪尔森(Paul Samuelson)的一句俏皮话:骗子成功预测了最近五次衰退中的九次衰退。 笔者对数据骗子没有耐心。“了解”一些长得像猫王的薯片又怎样?没人在乎你的观点是不是符合原来的“薯片”。解释再天花乱坠,笔者也不为所动。看看理论/模型能不能适用于(而且能够一直适用于)一大堆从未见过的新“薯片”,这才是对该观点的真正考验。 给数据科学专业人士的建议 数据科学专业人士,如果你想得到那些明白此处幽默的人的重视,请不要再用花哨的方程式来支持你的个人偏见。让我们看看你的真才实学。如果你想让那些“了解”你理论/模型的人将这些理论/模型看作是鼓舞人心的诗歌,那么就请大胆地在他们面前用全新的数据集进行一次伟大的展示吧! 给领导者的建议 领导者不愿认真看待任何与数据有关的“见解”,除非这些见解已经通过了新数据的测试。不想付出努力吗?要坚持利用分析学,但不要依赖于这些见解——它们站不住脚,而且其可信度尚未通过检查。 此外,公司拥有大量数据时,将分割数据作为科学文化的核心部分,甚至通过对专用于统计数据的测试数据的访问加以控制,从而将其应用于基础架构,这不会有任何坏处。这是一个将“万金油”扼杀于摇篮之中的好办法! 数据过少而无法分割时,只有数据骗子才会严格追随他们的灵感,用数学方法重新发现他们已知的存在于数据中的现象,宣称他们的惊人发现具有统计学意义,这便是后见之明。这让他们有别于思想开放的分析师和细心的统计学家。
数据充足时,要养成数据分割的习惯,一定要对原始数据堆的不同子集分别进行分析和统计。这样你就可以在不受骗的情况下占据双重优势了! (编辑:淮南站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |